PERPUSTAKAAN UNIVERSITAS WIRARAJA

Knowledge Center for Future

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
No image available for this title
Penanda Bagikan

Penelitian Dosen

Hybrid SARIMA-FFNN model in forecasting cash outflow and inflow

Wibisono, Aryo - Nama Orang;

Tidak Tersedia Deskripsi


Ketersediaan
#
Perpustakaan Universitas Wiraraja Sumenep Location name is not set
J0010286
Tersedia namun tidak untuk dipinjamkan - Tidak Bisa Dipinjam
Informasi Detail
Judul Seri
-
No. Panggil
-
Penerbit
: .,
Deskripsi Fisik
-
Bahasa
Indonesia
ISBN/ISSN
-
Klasifikasi
NONE
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
-
Subjek
-
Info Detail Spesifik
-
Pernyataan Tanggungjawab
-
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • Hybrid SARIMA-FFNN model in forecasting cash outflow and inflow
    The monthly inflow and outflow of money from an area is one of the important concerns in the economic life of a region. This study aims to model and predict the monthly cash inflow and outflow of Kediri, East Java Province, Indonesia using the Hybrid Seasonal Autoregressive Integrated Moving Average – Feedforward Neural Network (SARIMA-FFNN) model. Seasonal time series data from monthly cash inflow and outflow of Kediri are used to test the forecasting accuracy of the proposed hybrid model. First, both variables are modeled using the SARIMA model. Then, non-linearity testing was carried out on the best SARIMA model for each variable and the results showed that only cash inflow was non-linear. Therefore, only cash inflow could be continued with the FFNN model. The best selected model was the FFNN model with the input SARIMA(0,0,0)(1,0,0)12 with five hidden layers. The input of FFNN modeling was based on the best SARIMA model with only the autoregressive order which for non-seasonal and seasonal. The sum of hidden layers was chosen by the smallest values of MAPE and RMSE. Forecasting results with the hybrid SARIMA-FFNN model on data testing followed the actual data pattern.
    Other Resource Link
Komentar

Anda harus masuk sebelum memberikan komentar

PERPUSTAKAAN UNIVERSITAS WIRARAJA
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

Perpustakaan memberikan beberapa layanan perpustakaan yaitu Layanan sirkulasi, Layanan referensi, Layanan Tugas Akhir (skripsi, tesis, disertasi, laporan penelitian), Layanan terbitan berkala (jurnal, majalah, koran, buletin, tabloid), Layanan fotokopi, Layanan penelusuran informasi dan pustaka elektronik,

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?