PERPUSTAKAAN UNIVERSITAS WIRARAJA

Knowledge Center for Future

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
No image available for this title
Penanda Bagikan

Proceeding

Modelling and forecasting cash outflow-inflow using ARIMA-Feedforward Neural Network

Wibisono, Aryo - Nama Orang;

Tidak Tersedia Deskripsi


Ketersediaan
#
Perpustakaan Universitas Wiraraja Sumenep Location name is not set
P21009
Tersedia namun tidak untuk dipinjamkan - Mising
Informasi Detail
Judul Seri
-
No. Panggil
-
Penerbit
: AIP., 2022
Deskripsi Fisik
-
Bahasa
Indonesia
ISBN/ISSN
-
Klasifikasi
NONE
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
-
Subjek
-
Info Detail Spesifik
-
Pernyataan Tanggungjawab
-
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • Modelling and forecasting cash outflow-inflow using ARIMA-Feedforward Neural Network
    Time series data modelling is often done in the world of the economy. In this study, modelling and forecasting of cash outflows and inflows were carried out, especially at the Bank Indonesia Representative Office in Malang City. The amount of money going out and going in needs to be modelled and forecasted to estimate people's money needs in the next period. Forecasting and modelling time-series data that is often used is the Autoregressive Integrated Moving Average. However, the modelling can be said to be a simple time series modelling and cannot model non-linear models. One of the developments of machine learning modelling to predict time series data is a Feedforward Neural Network model which is used for forecasting cash outflows. ARIMA (1,1,1) model is used to forecast cash inflow. The FFNN model cannot be used for these data because the cash inflow does not meet the non-linearity assumption. Meanwhile, cash outflow uses the FFNN model with ARIMA input (2,1,0) and eight hidden layers. The cash outflow modelling input used is based on the best ARIMA model and the determination of the number of hidden layers is done by selecting the smallest MAPE and RMSE values.
Komentar

Anda harus masuk sebelum memberikan komentar

PERPUSTAKAAN UNIVERSITAS WIRARAJA
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

Perpustakaan memberikan beberapa layanan perpustakaan yaitu Layanan sirkulasi, Layanan referensi, Layanan Tugas Akhir (skripsi, tesis, disertasi, laporan penelitian), Layanan terbitan berkala (jurnal, majalah, koran, buletin, tabloid), Layanan fotokopi, Layanan penelusuran informasi dan pustaka elektronik,

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?